
ShyLU: A Hybrid-Hybrid Solver for Multicore Platforms

Sivasankaran Rajamanickam1, Erik G. Boman1, and Michael A. Heroux1,

E-mail:{srajama@sandia.gov, egboman@sandia.gov and maherou@sandia.gov}
1 Sandia National Laboratories.

Abstract—With the ubiquity of multicore processors, it is
crucial that solvers adapt to the hierarchical structure of
modern architectures. We present ShyLU, a “hybrid-hybrid”
solver for general sparse linear systems that is hybrid in two
ways: First, it combines direct and iterative methods. The
iterative part is based on approximate Schur complements
where we compute the approximate Schur complement using
a value-based dropping strategy or structure-based probing
strategy.

Second, the solver uses two levels of parallelism via hybrid
programming (MPI+threads). ShyLU is useful both in shared-
memory environments and on large parallel computers with
distributed memory. In the latter case, it should be used as a
subdomain solver. We argue that with the increasing complexity
of compute nodes, it is important to exploit multiple levels of
parallelism even within a single compute node.

We show the robustness of ShyLU against other algebraic
preconditioners. ShyLU scales well up to 384 cores for a
given problem size. We also study the MPI-only performance
of ShyLU against a hybrid implementation and conclude
that on present multicore nodes MPI-only implementation is
better. However, for future multicore machines (96 or more
cores) hybrid/ hierarchical algorithms and implementations are
important for sustained performance.

I. INTRODUCTION

The general trend in computer architectures is towards

hierarchical designs with increasing node level parallelism.

In order to scale well in these architectures, applications

need hybrid/hierarchical algorithms for the performance

critical components. The solution of sparse linear systems

is an important kernel in scientific computing. A diverse

set of algorithms is used to solve linear systems, from

direct solvers to iterative solvers. A common strategy for

solving large linear systems on large parallel computers,

is to first employ domain decomposition (e.g., additive

Schwarz) on the matrix to break it into subproblems that

can then be solved in parallel on each core or on each

compute node. Typically, applications run one MPI process

per core, and one subdomain per MPI process. A drawback

of domain decomposition solvers or preconditioners is that

the number of iterations to solve the linear system will

increase with the number of subdomains. With the rapid

increase in the number of cores one subdomain per core is

no longer a viable approach. However, one subdomain per

node is reasonable since the recent and future increases in

parallelism are and will be primarily on the node. Thus, an

increasingly important problem is to solve linear systems

in parallel on the compute node. Our hybrid-hybrid method

is “hybrid” in two ways: the solver combines direct and

iterative algorithms, and uses MPI and threads in a hybrid

programming approach.

In order to be scalable and robust it is important for

solvers and preconditioners to use the hybrid approach in

both meanings of the word. The hybrid programming model

ensures good scalability within the node and the hybrid

algorithm ensures robustness of the solver. A sparse direct

solver is very robust and the BLAS based implementations

are capable of performing near the peak performance of

desktop systems for specific problems. However, they have

high memory requirements and poor scalability in distributed

memory systems. An iterative solver, while highly scalable

and customizable for problem specific parameters, is not

as robust as a direct solver. A hybrid preconditioner can

be conceptually viewed as a middle ground between an

incomplete factorization and a direct solver.

A. ShyLU Scope and Our Contributions

Current iterative solvers and preconditioners (such as

ML [1] or Hypre [2]) need a node level strategy in order

to scale well in large petascale systems where the degree of

parallelism is extremely high. The natural way to overcome

this limitation is to introduce a new level of parallelism in the

solver. We envision three levels of parallelism: At the top,

there is the inter-node parallelism (typically implemented

with MPI) and two levels of parallelism (MPI+threads) on

the node. Section V describes the various options to use

a parallel node level preconditioner with three levels of

parallelism.

The node level is where the degree of parallelism is

rapidly increasing and this is the scope of ShyLU. Previous

Schur/hybrid solvers all solve the global problem, competing

with multigrid. This approach instead complements the

multigrid methods and focuses on the scalability on the node.

In this paper, we concentrate on the node level parallelism

and leave the integration into the third (inter-node) level as

future work.

Our first contribution is a new scalable hybrid sparse

solver, ShyLU (Scalable Hybrid LU, pronounced Shy-Loo),

based on the Schur complement framework. ShyLU is based

on Trilinos [3] and also intended to become a Trilinos

package. It is designed to be a “black box” algebraic solver

that can be used on a wide range of problems. Furthermore,

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IPDPS.2012.64

631

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IPDPS.2012.64

631

it is suitable both as a solver on a single-node multicore

workstation and as a subdomain solver on a compute node

of a petaflop system. Our target is computers with many

CPU-like cores, not GPUs.

Second, we revisit every step of the Schur complement

framework to exploit node level parallelism and to improve

the robustness of ShyLU as a preconditioner. ShyLU uses a

new probing technique that exploits recent improvements in

parallel coloring algorithms to get a better approximation of

the Schur complement.

Third, we try to answer the question: “When will the

hybrid implementation of a complex algorithm be better

than a pure MPI-based implementation?”. We use ShyLU as

our target “application” as a complex algorithm like linear

solver, with a pure MPI-based implementation and a hybrid

MPI+Threads implementation should be able to provide a

reasonable answer to this question. The answer is dependent

on algorithms, future changes in architectures, problem sizes

and various other factors. We address this question for our

specific algorithm and our target applications.

B. Previous work

Many good parallel solver libraries have been developed

over the last decades; for example, PETSc [4], Hypre [2],

and Trilinos [3]. These were mainly designed for solving

large distributed systems over many processors. ShyLU’s

focus is on solving medium-sized systems on a single com-

pute node. This may be a subproblem within a larger parallel

context. Some parallel sparse direct solvers (e.g., SuperLU-

MT [5], [6] or Pardiso [7]) have shown good performance

in shared-memory environments, while distributed-memory

solvers (for example MUMPS [8], [9]) have limited scalabil-

ity. Pastix [10] is an interesting sparse direct solver because

it uses hybrid parallel programming with both MPI and

threads. However, any direct solver will require lots of mem-

ory due to fill-in and they are not ready to handle the O(100)

to O(1000) expected increase in the node concurrency (in

their present form at least). To reduce memory requirements,

incomplete factorizations is a natural choice. There are only

few parallel codes available for incomplete factorizations in

modern architectures. (e.g., [11], [12])

Recently, there has been much interest in hybrid solvers

that combine features of both direct and iterative meth-

ods. Typically, they partially factor a matrix using direct

methods and use iterative methods on the remaining Schur

complement. Parallel codes of this type include HIPS [13],

MaPhys [14], and PDSLin [15]. ShyLU is similar to these

solvers in a conceptual way that all these solvers fall into the

broad Schur complement framework described in section II.

This framework is not new, and similar methods were

already described in Saad et al. [16]. However, each of these

solvers, including ShyLU, is different in the choices made

at different steps within the Schur complement framework.

Furthermore, we are not aware of any code that is hybrid

Figure 1. Partitioning and reordering of a (a) nonsymmetric matrix and
(b) symmetric matrix.

in both the mathematical and in the parallel programming

sense. In contrast to the other hybrid solvers our target is a

multicore node. See section IV for how these solvers differ

from ShyLU in the different steps of the Schur complement

framework.

II. SCHUR COMPLEMENT FRAMEWORK

This section describes the framework to solve linear

systems based on the Schur complement approach. There

has been lot of work done in this area; see for example,

Saad [17, Ch.14] and the references therein.

A. Schur complement formulation

Let Ax = b be the system of interest. Suppose A has the

form

A =
(

D C
R G

)
, (1)

where D and G are square and D is non-singular. The Schur

complement after elimination of the top row is S = G−R∗
D−1C. Solving Ax = b then consists of solving(

D C
R G

)
×

(
x1

x2

)
=

(
b1

b2

)
(2)

by solving

1) Dz = b1.

2) Sx2 = b2 −Rz.

3) Dx1 = b1 − Cx2.

The algorithms that use this formulation to solve the

linear system in an iterative method or a hybrid method

essentially use three basic steps. We like to call this the

Schur complement framework:

Partitioning: The key idea is to permute A to get a D that

is easy to factor. Typically, D is diagonal, banded or block

diagonal and can be solved quickly using direct methods.

As the focus is on parallel computing, we choose D to be

block diagonal in our implementation. Then R corresponds

to a set of coupling rows and C is a set of coupling columns.

See Figure 1 for two such partitioning. The symmetric

case in Figure 1(b) is identical to the Schur complement

formulation. The nonsymmetric case in Figure 1(a) can be

632632

solved using the same Schur complement formulation even

though it appears different.

Sparse Approximation of S: Once D is factored (either

exactly or inexactly), the crux of the Schur complement

approach is to solve for S iteratively. There are several

advantages to this approach. First, S is typically much

smaller than A. Second, S is generally better conditioned

than A. However, S is typically dense making it expensive

to compute and store. All algorithms compute a sparse

approximation of S (S̄) either to be used as a preconditioner

for an implicit S or for an inexact solve.

Fast inexact solution with S: Once S̄ is known there are

multiple options to solve S and then to solve for A. For

example, the algorithms can choose to solve D exactly and

just iterate on the Schur complement system (S) using S̄ as a

preconditioner and solve exactly for the full linear system, or

use an incomplete factorization for D and then use iterative

methods for solving both S and A, using an inner-outer

iteration. The options for preconditioners to S vary as well.

Different hybrid solvers choose different options in the

above three steps, but they follow this framework.

B. Hybrid Solver vs. Preconditioner

Hybrid solvers typically solve for D exactly using a sparse

direct solver. This also provides an exact operator for S.

Note that S does not need to be formed explicitly but the

action of S on a vector can be computed by using the identity

S = G−R∗D−1C. This can save significant memory, since

S can be fairly dense.

We take a slightly different perspective: We design an

inexact solver that may be used as a preconditioner for A
where A corresponds to a subdomain problem within a larger

domain decomposition framework. As a preconditioner, we

no longer need to solve for D exactly. Also, we don’t need to

form S exactly. If we solve for S using an iterative method,

we get an inner-outer iteration. The inner iteration is internal

to ShyLU, while the outer iteration is done by the user. When

the inner iteration runs for a variable number of iterations,

it is best to use a flexible Krylov method (e.g., FGMRES)

in the outer iteration.

C. Preconditioner Design

As is usual with preconditioners (see e.g., IFPACK [18]),

we split the preconditioner into three phases: (i) Initialize,

(ii) Compute, and (iii) Solve. Initialize (Algorithm 1) only

depends on the sparsity pattern of A, so may be reused for

a sequence of matrices. Compute (Algorithm 2) recomputes

the numeric factorization and S̄ if any matrix entry has

changed in value. Solve (Algorithm 3) approximately solves

Ax = b for a right-hand side b.

III. NARROW SEPARATORS VS WIDE SEPARATORS

The framework in Section II depends on finding separators

to partition the matrix into the bordered form. The traditional

Algorithm 1 Initialize

Require: A is a square matrix

Require: k is the desired number of parts (blocks)

Partition A into k parts.

Ensure: Let D be block diagonal with k blocks.

Ensure: Let R be the row border and C the column border.

Algorithm 2 Compute

Require: Initialize has been called.

Factor D.

Compute S̄ ≈ G−R ∗D−1C.

way to find this separator is to represent the matrix as

graph or hypergraph and find a partitioning of the graph

or hypergraph. Let (V1, V2, P) be a partition of the vertices

V in a graph G(V,E). P is a separator if there is no edge

(v, w) such that v ∈ V1 and w ∈ V2. Separator P is called

a wide separator if any path from V1 to V2 contains at least

two vertices in P . A separator that is not wide is called a

narrow separator. Note that the edge separator as computed

by many of the partitioning packages corresponds to a wide

vertex separator.

Wide separators were originally used as part of order-

ing techniques for sparse Gaussian elimination [19]. The

intended application at that time was sparse direct factoriza-

tion [20]. We revisit this comparison with respect to hybrid

solvers here.

From the perspective of the graph of the matrix, the

narrow separator is shown in Figure 2(a). The corresponding

wide separator is shown in Figure 2(b). The doubly bordered

block diagonal form of a matrix A when we use a narrow

separator is shown below (for two parts).

Anarrow =

⎛
⎜⎜⎝

D̂11 0 Ĉ11 Ĉ12

0 D̂22 Ĉ21 Ĉ22

R̂11 R̂12 Ĝ11 Ĝ12

R̂21 R̂22 Ĝ21 Ĝ22

⎞
⎟⎟⎠ (3)

All the R̂ij blocks and Ĉij blocks can have nonzeros in

them. As a result, every block in the Schur complement

might require communication when we compute it. For

example, while using the matrix from the narrow separator

Anarrow to compute the Ŝ11 block of the Schur complement

we do

Algorithm 3 Solve

Require: Compute has been called.

Solve Dz = b1.

Solve either Sx2 = b2 −Rz or S̄x2 = b2 −Rz.

Solve Dx1 = b1 − Cx2.

633633

(a) Narrow Separator. (b) Wide Separator.

Figure 2. Wide Separator and Narrow Separator of a graph G.

Ŝ11 = Ĝ11 − R̂11 ∗ D̂−1
1 ∗ Ĉ11 + R̂12 ∗ D̂−1

2 ∗ Ĉ21 (4)

Computing the Schur complement in the above form is

expensive due to the communication involved. However, the

doubly bordered block diagonal form for two parts when

we use a wide separator has more structure to it as shown

below.

Awide =

⎛
⎜⎜⎝

D11 0 C11 0
0 D22 0 C22

R11 0 G11 G12

0 R22 G21 G22

⎞
⎟⎟⎠ (5)

Although this block partition is similar to Equation (3),

the matrix blocks will in general have different sizes since

a wide separator is larger than the corresponding narrow

separator. Consider that rows of Dii are the interior vertices

in part i and the rows in Rij are boundary vertices in part

i then we observe that all blocks Rij and Cij will be equal

to zero when i �= j. This follows from the definition of the

wide separator.

As R and C are block diagonal matrices, we can compute

the Schur complement without any communication. For

example, to compute the S11 block of the Schur complement

of Awide we do

S11 = G11 −R11 ∗D−1
1 ∗ C11 (6)

Thus computing S in the wide separator case is fully

parallel. The off-diagonal blocks of the Schur complement

are equal to the off-diagonal blocks of G. However, the

wide separator can be as much as two times the size of the

narrow separator. This results in a larger Schur complement

system to be solved when using the wide separator. When the

separator was considered as a serial bottleneck (when they

were originally designed for direct solvers) there was a good

argument to use the narrow separators. However, in hybrid

solvers, we solve the Schur complement system in parallel

as well. As a result, while the bigger Schur complement

system leads to increased solve time, the much faster setup

due to increased parallelism offsets the small increase in

solve time. All the experiments in the rest of this work

use wide separators for increased parallelism. Note that the

Schur complement using the wide separator is similar to the

local Schur complement [17].

The edge separator from graph and hypergraph parti-

tioning gives a wide (vertex) separator by simply taking

the boundary vertices. Although this is a good approach

for most problems, we observed that on problems with a

few dense rows or columns, the narrow separator approach

works better. Therefore, ShyLU also has the option to use

narrow separators. While some partitioners can compute

narrow vertex separators directly, we implemented a simple

heuristic to compute a (narrow) vertex separator from the

edge separator so we can use any partitioner.

IV. IMPLEMENTATION

This section describes the implementation details of

ShyLU for each step of the Schur complement framework.

ShyLU uses an MPI and threads hybrid programming model

even within the node. Notice that in the Schur complement

framework the partitioning and reordering is purely alge-

braic. This reordering exposes one level of data parallelism.

ShyLU uses MPI tasks to solve for each Di and the Schur

complement. A further opportunity for parallelism, is within

the diagonal blocks Di. where a threaded direct solver, for

example, Pardiso [7] or SuperLU-MT [5], [6], is used to

factor each block Di. The assumption here is multithreaded

direct solvers (or potentially incomplete factorizations in

the future) can scale well within a uniform memory access

(UMA) region, where all cores have equal (fast) access to

a shared memory region. Using MPI between UMA regions

mitigates the problems with data placement and non-uniform

memory accesses and also allows us to run across nodes, if

desired.

ShyLU uses the Epetra package in Trilinos with MPI for

the matrix A. When combined with a multithreaded solver

for the subproblems, we have a hybrid MPI-threads solver.

This is a very flexible design that allows us to experiment

with hybrid programming and the trade-offs of MPI vs.

threads. In the one extreme case, the solver could partition

and use MPI for all the cores and use no threads. The

other extreme case is to only use the multithreaded direct

634634

solver. We expect the best performance to lie somewhere in

between. A reasonable choice is to partition for the number

of sockets or UMA regions. We will study this in Section VI.

The framework consists of partitioning, sparse approxi-
mation of the Schur complement, and fast, inexact (or exact)
solution of the Schur complement. The first two steps only

have to be done once in the setup phase.

A. Partitioning

ShyLU uses graph or hypergraph partitioning to find a D
that has a block structure and is suitable for parallel solution.

To exploit locality (on the node), we partition A into k parts,

where k > 1 may be chosen to correspond to number of

cores, sockets, or UMA regions. The partitioning induces

the following block structure:

A =
(

D C
R G

)
, (7)

where D again has a block structure. As shown in Figure 1

there are two cases. In the symmetric case, ShyLU uses

a symmetric permutation PAPT to get a doubly bordered

block form. In this case, D = diag(D1, . . . , Dk) is a block

diagonal matrix, R is a row border, and C is a column

border. In the nonsymmetric case, there is no symmetry to

preserve so we allow nonsymmetric permutations. There-

fore, instead we find PAQ with a singly bordered block

diagonal form (Figure 1(b)). A difficulty here is that the

“diagonal” blocks are rectangular, but we can factor square

submatrices of full rank and form R, the row border after

the factorization. ShyLU can use a direct factorization that

can factor square subblocks of rectangular matrices. There

are no multithreaded direct solvers that can handle this case

now. We focus on the structurally symmetric case here. In

our experiments for unsymmetric matrices, we apply the

permutation in a symmetric manner to form the DBBD form.

Several variations of graph partitioning can be used to ob-

tain block bordered structure. Traditional graph partitioning

attempts to keep the parts of equal size while minimizing

the edge cut. We will consider the edge separator as our sep-

arator. The other hybrid solvers we know (see Section I) use

some form of graph partitioning. Hypergraph partitioning is

a generalization of graph partitioning that is also well suited

for our problem because it can minimize the border size

directly. Also, it naturally handles nonsymmetric problems,

while graph partitioning requires symmetry. ShyLU uses

hypergraph partitioning in both the symmetric and nonsym-

metric cases. ShyLU uses the Zoltan/PHG partitioner [21]

and computes the wide separators and narrow separators

from a distributed matrix.

B. Diagonal block solver

The blocks Di are relatively small and will typically

be solved on a small number of cores, say in one UMA

region. Either exact or incomplete factorization can be used.

We choose to use a sparse direct solver. All the results in

Section VI use Pardiso [7] from Intel MKL, which is a

multithreaded solver. Since the direct solver typically will

run within a single UMA region, it does not need to be

NUMA-aware. ShyLU uses the Amesos package [22] in

Trilinos which is a common interface to multiple direct

solvers. This enables ShyLU to switch between any direct

solver supported by the Amesos package. The other hybrid

solvers mentioned in Section I all use a serial direct solver

in this step.

C. Approximations to the Schur Complement

The exact Schur complement is S = G − R ∗ D−1C.

In general, S can be quite dense and is too expensive to

store. There are two ways around this: First, we can use S
implicitly as an operator without ever forming S. Second,

we can form and store a sparse approximation S̄ ≈ S. As

we will see, both approaches are useful.

The Schur complement itself has a block structure

S =

⎛
⎜⎜⎜⎝

S11 S12 . . . S1k

S21 S22 . . . S2k

...
...

...

Sk1 Sk2 . . . Skk

⎞
⎟⎟⎟⎠ (8)

where it is known that the diagonal blocks Sii are usually

quite dense but the off-diagonal blocks are mostly sparse

[17]. Note that the local Schur complements Sii can be

computed locally by Sii = Gii − Ri ∗ D−1
ii Ci. A popular

choice is therefore to use the local Schur complements as a

block diagonal approximation. As we use wide separators as

discussed above all the fill is in our local Schur complement

and all the offdiagonal blocks have the same sparsity pattern

as the corresponding Gij . To save storage, the local Schur

complements themselves need to be sparsified [23], [15].

We investigate two different ways to form S̄ ≈ S:

Dropping and Probing. Both methods attempt to form a

sparser version of S while preserving the main properties

of S.
1) Dropping (value-based): With dropping we only keep

the largest (in magnitude) entries of S. This is a common

strategy and was also used in HIPS and PDSLin. Symmetric

dropping is used in [24]. When forming S = G−R∗D−1C,

we simply drop entries less than a given threshold. We use a

relative threshold, dropping entries that are smaller relative

to the large entries. Since S can be quite dense, we only form

a few columns at a time and immediately sparsify. Note we

do not drop entries based on U−1C or R∗U−1 where L and

U are the LU factors of D, as in HIPS or PDSLin. Since

our dropping is based on the actual entries in S, we believe

our approximation S̄ is more robust. However, even with

the parallelism at the MPI level, computing local Sii to drop

the entries is itself expensive. Instead of trying to parallelize

the sparse triangular solve to compute the Rii ∗D−1
ii ∗ Cii,

we compute the columns of S in chunks and exploit the

635635

(a) Structure of typical banded probing for S̄, B. (b) Structure of G submatrix. (c) Structure of S̄ = B∪G for ShyLU’s probing.

Figure 3. A sketch of the pattern used for probing in ShyLU.

parallelism available from using the multiple right hand sides

in a sparse triangular solve.

2) Probing (structure-based): Since dropping may be

expensive in some cases, ShyLU can also use probing.

Probing was developed to approximate interfaces in domain

decomposition [25], which is also a Schur complement. In

probing, we select the sparsity pattern of S̄ ≈ S first. Given

a sparsity pattern we probe the Schur complement operator

S for the entries given in the sparsity pattern instead of

computing the entire Schur complement and drop the entries.

It is possible to probe the operator efficiently by coloring the

sparsity pattern of S̄ and computing a set of probing vectors,

V , based on the coloring of S̄. V is a n-by-k matrix where

k is the number of colors and n is the dimension of S. The

number of colors in the coloring problem corresponds to

the number of probing vectors needed. The coloring of the

pattern computes the orthogonal columns in S̄, so we apply

the operator to only the few vectors that are needed.

Finally, we apply S = G − RD−1C as an operator to

the probing vectors V to obtain SV , which then gives us

the numerical values for S̄ in a packed format. We need to

unpack the entries to compute S̄. We refer to Chan et al. [25]

for the probing algorithm.

Generally, the sparser S̄, the fewer the number of probing

vectors needed. Choosing the sparsity pattern of S̄ can be

tricky. For PDE problems where the values in S decay away

from the diagonal, a band matrix is often used [25]. We

show how probing works by using a tridiagonal approxima-

tion of the Schur complement as an example. Coloring the

pattern of a tridiagonal matrix results in three colors. Then

the three probing vectors corresponding to the three colors

are

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(9)

with Vij = 1 if column i had color j. S ∗ V gives us

the entries corresponding to the tridiagonal of the Schur

complement in a packed format. However, a purely banded

approximation will lose any entries in S (and G) that are

outside the bandwidth. To strengthen our preconditioner, we

include the pattern of G in the probing pattern, which is

simple to do as G is known a priori. To summarize, the

pattern of S̄ in ShyLU’s probing is pattern of B ∪G, where

B is a banded matrix.

Figure 3 shows a sketch of how ShyLU’s probing tech-

nique compares to traditional probing. Figure 3(a) shows

the structure of a typical banded probing assuming we are

looking for a few diagonals. To this structure, our algorithm

also includes the structure of G from the reordered matrix

(Figure 3(b)), for probing. As result the structure for the

probing is as shown in Figure 3(c). The idea behind adding

G to the structure of S̄ is that any entry that is originally

part of G is important in S̄ as well. Experimental results

showed a bandwidth of 5% seems to work well for most

problems.

Probing for a band structure is straight-forward since the

probing vectors are trivial to compute. In our approach, we

need to use graph coloring on the structure of S̄ (which

in our case is B ∪ G) to find the probing vectors. We use

the Prober in Isorropia package of Trilinos which in turn

uses the distributed graph coloring algorithm [26] in Zoltan.

Note that all the steps in probing - the coloring, applying the

probing vector and extracting S̄, are done in parallel. Probing

636636

for a complex structure is computationally expensive, but we

save quite a lot in memory as the storage required for the

Schur complement is the size of G with a few diagonals.

However, for problems where the above discussed structure

of S̄ is not sufficient, the more expensive dropping strategy

can be used.

D. Solving for the Schur Complement

As in the steps before, there are several options for solving

for the Schur complement as well. Recall that we have

formed S̄, a sparse approximation to S. A popular approach

in hybrid methods is to solve the Schur complement system

iteratively using S̄ as a preconditioner. In each iteration, we

have to apply S, which can be done implicitly without ever

forming S explicitly. Note that implicit S requires sparse

triangular solves for D in every iteration. We call this the

exact Schur complement solver.

As we only need an inexact solve as a preconditioner,

it is also possible to solve S̄ instead of solving S. Now,

even S̄ is large enough that it should be solved in parallel.

We solve for S̄ iteratively using yet another approximation

S̃ ≈ S̄ as a preconditioner for S̄. It should be easy to solve

for S̃ in parallel. In practice, S̃ can be quite simple, for

example, diagonal (Jacobi) or block diagonal (block Jacobi).

The main difference from the exact method is that we do

not use the Schur complement operator even for matrix

vector multiplies in the inner iteration. Instead we use S̄.

We call this approach the inexact Schur complement solver.

ShyLU can do both the exact and inexact solve for the

Schur complement. We compare the robustness of both these

approaches in Section VI.

Once the preconditioner (S̄ or S̃) and the operator for

our solve (either an implicit S or S̄) is decided there are

two options for the solver. If D is solved exactly and an

implicit S is the operator it is sufficient to iterate over S
(as in [13]) and not on A. Instead any scheme that uses an

inexact solve for D or an iterative solve on S̄ (instead of

S) or both implies an inner-outer iterative method for the

overall system. as it is required to iterate on A. It is because

of this reason ShyLU uses an inner-outer iteration, where

the inner iteration is only on the Schur complement part.

The inner iteration (over S or S̄) is internal in the solver

and invisible to the user, while the outer iteration (over A)

is controlled by the user. We expect a trade-off between the

inner and outer iterations. That is, if we iterate over S we

need few outer iterations while if we iterate on S̄ we may

need more outer iterations but fewer inner iterations.

By default, we do 30 inner iterations or to an accuracy of

10−10 whichever comes first.

E. Parallelism

Our implementation of the Schur complement framework

is parallel in all three steps. We use Zoltan’s parallel hy-

pergraph partitioning to partition and reorder the problem.

The block diagonal solvers are multithreaded in addition to

the parallelism from the MPI level. We use parallel coloring

from Zoltan to find orthogonal columns in the structure of

S̄ and sparse matrix vector multiplication to do the probing.

The Schur complement solve uses our parallel iterative

solvers for solving for S or S̄ which use a multithreaded

matrix vector multiplication.

V. PARALLEL NODE LEVEL PRECONDITIONING

ShyLU is a hybrid solver designed for the multicore node

and uses MPI and threads even within the node. This is

different from other approaches where MPI + threads model

spans across the entire system, not just the node, and there

is only one MPI processes per node. We see two problems

with one MPI process per node approach:

1) Parts of the applications other than the solver have

fewer MPI processes limiting their scalability.

2) Scaling the multithreaded solvers on the compute

nodes with NUMA accesses is a harder problem.

Instead, we believe one MPI process per socket or UMA

region is a more practical approach for scalability at least

in the near term. ShyLU also decouples the idea that

one subdomain corresponds to one MPI process. An MPI

based subdomain solver like ShyLU allows the subdomain,

in a domain decomposition method, to span several MPI

processes.

Nothing prevents us from using ShyLU across the entire

system as it is based on MPI, however the separator size (and

thus the Schur complement) will grow with the number of

parts. While using a multithreaded solver for the D blocks

limit the size of the Schur complement to a certain extent

(by partitioning for fewer MPI processes) we recommend

using a domain decomposition method with little commu-

nication (e.g., additive Schwarz) at the global level, and

ShyLU on the subdomains. Such a scheme will exploit

three levels of parallelism, where the top level requires

little communication while the lower levels require more

and more communication. In essence, we adapt the solver

algorithm to the machine architecture. We believe this is

a good design for future exascale computers that will be

hierarchical in structure.

The Schur complement framework and the MPI+threads

programming model also allow ShyLU be fully flexible in

terms of how applications use it. We envision ShyLU to be

used by the applications in three different modes:

1) When applications start one MPI process per UMA

region in the near future, a simple MPI Comm Split()
can map all the MPI processes in a node to ShyLU’s

MPI processes. A subdomain will be defined as one

per node.

2) When applications start one MPI process per node,

additive Schwarz will use a threads-only ShyLU.

3) Applications that now run one MPI process per core

remain that way, the additive Schwarz preconditioner

637637

Figure 4. Cross-section of 3D unstructured mesh on an irregular domain.

(which will use ShyLU on subdomains) can define the

subdomains as one per node and transform the matrix

for ShyLU. ShyLU will not be able to use additional

threads in this case.

Thus the MPI+threads programming model in ShyLU’s

design helps make the application migration to the multicore

systems smooth depending on how the applications want to

migrate.

VI. RESULTS

We perform three different set of experiments. First, we

wish to test robustness of ShyLU compared to other common

algebraic preconditioners. Second, we study ShyLU perfor-

mance on multicore platforms, and in particular the trade-off

between MPI-only vs. hybrid models. This study will also

look at performance of ShyLU while doing strong scaling.

Third, we study weak scaling of ShyLU on both 2D and 3D

problems.

A. Experimental setup

We have implemented ShyLU in C++ within the Trili-

nos [3] framework. We leverage several Trilinos packages,

in particular:

1) Epetra for matrix and vector data structures and ker-

nels.

2) Isorropia and Zoltan for matrix partitioning and prob-

ing.

3) AztecOO and Belos for iterative solves (GMRES).

In addition to the Trilinos packages we also use PARDISO

as our multithreaded direct solver. We use two test platforms.

The first is Hopper, a Cray XE6 at NERSC. Hopper has

6392 nodes, each with two twelve-core AMD MagnyCours

processors running at 2.1 GHz. Thus, each node has 24

cores and is a reasonable prototype for future multicore

nodes. Furthermore, the Hopper system is attractive to us

because of its NUMA properties. The 24 cores in a node

are in fact four six-core UMA sets. We use Hopper for

all our strong scaling and weak scaling studies. Our other

test platform is an eight-core (dual-socket quad-core) Linux

workstation that represents current multicore systems. We

use this workstation for our robustness experiments.

All experimental results show the product of inner and

outer iterations that will be seen by the user of ShyLU.

When there are many tunable parameters there are two

ways to do experiments. Either choose the best parameters

for each problem, or always use the same parameters for

a given solver on the entire test set. All the experiments

in this section use solver specific parameters and there is

no tuning for a particular problem, since this is how users

typically use software. For probing we add 5% of diagonals

to the structure of G. For dropping, our relative dropping

threshold is 10−3. We use 30 inner iterations or 10−7 relative

residual whichever comes first and 500 outer iterations or

10−7 relative residual whichever comes first. This is fully

utilized when we use the inexact Schur complement.

B. Robustness

We validate the different methods in ShyLU by com-

paring it to incomplete factorizations and the HIPS [13]

hybrid solver. We use three different variations of ShyLU,

approximations based on dropping and probing with the

exact Schur complement solver and approximations based on

dropping and the inexact Schur complement solver. All three

approaches have tunable parameters that can be difficult

to choose. We used a fixed dropping/probing tolerance in

all our tests. The relative threshold for dropping is 10−3.

Similarly, we tested HIPS preconditioner with fixed settings

same as ShyLU. Our goal is to demonstrate the robustness

of ShyLU compared to one other hybrid solver that is

commonly used today. The tests also include ILU with

one level of fill. The number of iterations of the three

methods should not be compared directly, since the fill and

work differ in the various cases. The methods can be made

comparable by tuning the knobs. However, we have used the

parameters as they are used in our various applications.

We chose nine sparse matrices from a variety of appli-

cation areas, taken from the University of Florida sparse

matrix collection [27]. We added one test matrix from a

Sandia application, TC N 360K. The results are shown in

Table I. We see that the dropping approximation with the

exact Schur complement is the most robust approach among

all the approaches, in the sense it has fewer failures. This has

been observed in the past by others as well. The dropping

with exact Schur complement is better or very close to

HIPS in terms of the number of iterations. Generally, the

drop-tolerance version requires fewer iterations (though not

necessarily less run time) than the probing version.

A dash indicates that GMRES failed to converge to the

desired tolerance within 500 iterations. Note that the circuit

638638

Matrix Name N Symmetry ShyLU Dropping ShyLU Probing ShyLU Dropping HIPS ILU
Exact Schur Exact Schur Inexact Schur

venkat50 62.4K Unsymmetric 12 76 - 8 374
TC N 360K 360K Symmetric 32 82 17 19 203
Pres Poisson 14.8K Symmetric 14 26 14 11 -

FEM 3D thermal2 147K Unsymmetric 3 6 3 3 20
bodyy5 18K Symmetric 3 5 3 3 120

Lourakis bundle1 10K Symmetric 7 18 7 10 26
af shell3 504K Symmetric 50 - 39 29 -

Hamm/bcircuit 68.9K Unsymmetric 6 6 4 42 -
Freescale/transient 178.8K Unsymmetric 88 - - 440 -

Sandia/ASIC 680ks 682K Unsymmetric 4 34 2 2 57

Table I
COMPARISON OF NUMBER OF ITERATIONS OF SHYLU DROPPING AND PROBING WITH EXACT SOLVE, SHYLU DROPPING WITH INEXACT SOLVE, HIPS

AND ILU(1) FOR MATRICES FROM UF COLLECTION. A DASH INDICATES NO CONVERGENCE.

matrices bcircuit and transient are difficult for HIPS, but

ShyLU does well in these matrices. The matrix af shell3
has been called horror matrix in the past for posing difficulty

to preconditioners. Both ShyLU and HIPS could solve this

problem easily. ILU(1) does poorly on all the problems when

compared with the two hybrid preconditioners. However,

that is expected given the fact that ILU(1) uses considerably

less memory and has little information in the preconditioner

itself.
We further observe that the dropping version is more

robust than the probing version, as it solved all 10 test prob-

lems while the probing version failed in 2 out of 10 cases.

The inexact approach, as one would expect, is not as robust

as the exact approach with dropping. However, it converged

faster when it worked. We have also verified that ShyLU

takes less memory than a direct solver UMFPACK [28]. The

amount of memory used by ShyLU depends on the size of

the Schur complement, dropping criterion, and the solver

used for the block diagonals.

C. MPI+threads vs MPI performance
We implemented ShyLU with MPI at the top level. Each

MPI process corresponds to a diagonal block Di. We used

multi-threaded MKL-Pardiso as the solver for the Di blocks.

We wish to study the trade-off between MPI-only and hybrid

models. Our design allows us to run any combination of MPI

processes and threads. Note that when we vary the number of

MPI processes, we also change the number of Di blocks so

the preconditioner changes as well. Thus, what we observe in

the performance is a combined effect of changes in the solver

algorithm and in the programming model (MPI+threads).
Initially, we ran on one node of Hopper (24 cores).

However, the number of cores on a node is increasing

rapidly. We want to predict performance on future multicore

platforms with hundreds of cores. We simulate this by

running ShyLU on several compute nodes. Since we use

MPI even within the node, ShyLU also works across nodes.

We expect future multicore platforms to be hierarchical with

highly non-uniform memory access and running across the

nodes will reasonably simulate future systems. We expect

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Cores)
1 (24) 19.6 (79) 17.9 (91) 11.8 (122) 8.3 (144)
2 (48) 14.6 (115) 12.3 (122) 7.0 (144) 6.9 (196)
4 (96) 8.3 (122) 7.2 (144) 5.3 (196) 6.0 (227)

8 (192) 6.4(176) 5.2(196) 3.9(227) 6.9 (332)

Table II
STRONG SCALING AND HYBRID VS MPI-ONLY PERFORMANCE: SOLVE

TIME IN SECONDS (#ITERATIONS) FOR SHYLU DROPPING METHOD TO

SOLVE A LINEAR SYSTEM OF SIZE 360K.

the performance figures for more than 24 cores to get better.

However, we do not know how much MPI and threads

performance are going to get better. Assuming they improve

at the same rate, we compare the performance of the MPI-

only code with hybrid code to understand the possible

differences in future systems.

For this experiment we used a 3D finite element dis-

cretization of Poisson’s equation on an irregular domain,

shown in Figure 4. The matrix dimension was 360K. We

use the drop-tolerance version of ShyLU for our first set of

tests. For each node with 24 cores, we tested the following

configurations of MPI processes × threads: 4 × 6, 6 × 4,

12 × 2, and 24 × 1. The results for run-time and iterations

are shown in Table II. More than 6 threads per node is not

a recommended configuration for Hopper so those results

are not shown in Table II. The solve time is also shown in

Figure 5(a).

There are several interesting observations. First, we see

that although the number of iterations increase with the

number of MPI processes (going across the rows in Table II),

the run times may actually decrease. On a single node, we

see that the all-MPI version (24x1) is fastest, even though

it uses more iterations.

Second, we see that, as we add more nodes, the run times

decrease much more rapidly for the hybrid configurations.

For example, with four nodes, the 12x2 configuration gives

the fastest solve time. This is good news for hybrid methods

639639

(a) Dropping (b) Probing

Figure 5. Strong Scaling: ShyLU’s dropping and probing methods for a matrix of size 360K. Solve Time shown for MPI tasks x Threads.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Cores)
1 (24) 17.1 (64) 15.4 (70) 9.4 (83) 8.7 (97)
2 (48) 13.7 (76) 9.7 (83) 6.7 (97) 6.3 (114)
4 (96) 8.8 (98) 6.3 (97) 4.8 (114) 6.9 (148)

8 (192) 5.7 (111) 4.6 (114) 4.5(148) 9.3 (218)

Table III
STRONG SCALING AND HYBRID VS MPI-ONLY PERFORMANCE: SOLVE

TIME IN SECONDS (#ITERATIONS) FOR SHYLU PROBING METHOD TO

SOLVE A LINEAR SYSTEM OF SIZE 360K.

MPI Processes x Number of Threads in
each node

Nodes 6x4 12x2 24x1
(Cores)
2 (48) 25.1(90) 15.0(104) 11.5(115)
4 (96) 13.8(104) 9.2(115) 6.2(130)
8 (192) 9.5(115) 5.7(130) 5.1(139)

16 (384) 5.1(130) 3.2(139) 4.8(177)

Table IV
STRONG SCALING AND HYBRID VS MPI-ONLY PERFORMANCE: SOLVE

TIME IN SECONDS (#ITERATIONS) FOR SHYLU DROPPING METHOD TO

SOLVE A LINEAR SYSTEM OF SIZE 720K.

as they can take advantage of the node level concurrency. We

believe that this is mainly due to the subproblems getting

smaller. We conjecture that using more threads would be

helpful on smaller problem sizes per core.

To understand how the algorithmic choices affect our

strong scaling results we also repeated the experiment with

the same 360Kx360K problem with probing. The time for

the solve is shown in Figure 5(b). The results are almost

identical to the dropping method. The MPI only version

started performing poorly at 96 cores. At 192 cores any

MPI+thread combination beats MPI-only implementation.

However, MPI only is still the best choice at 24 cores.

The number of iterations for this experiment is shown in

Table III. We can see that the number of iterations for the

probing method is better than the dropping method.

To verify our conjecture, that the size of the problem in

each subdomain is important for hybrid performance, we

repeated the experiment, this time with a larger problem

720Kx720K. We did not use the 4x6 configuration as it

was the slowest in our previous experiment. The results are

shown in Table IV. Note that ShyLU scales well up to 384

cores. Furthermore, we see that the crossover point where

MPI+threads beats MPI-only implementation is different for

this larger problem (384 cores). The result can be seen

clearly in Figure 6 where we compare the 12x2 case against

24x1 for both the problems (360K and 720K). When the

problem size per subdomain is about 3500 unknowns the

performance is almost the same for all four cases. As

the problem size per subdomain gets smaller the hybrid

programming model gets better.

A consistent trend in our results is that as the number

of cores increase, and the size of the problems get smaller,

the hybrid (MPI+threads) solver outperforms the MPI-only

based solver.

D. Strong scaling

We can also get strong scaling results by looking at a

column at a time at the Tables II – IV. In the 360K

problem’s dropping case, the 4 × 6 configuration gives a

speedup of 2.3 going from one to four nodes, while the

24×1 only gave a speedup of 1.4. Although the first is quite

decent when one takes the communication across nodes into

account, one should keep in mind that ShyLU was primarily

intended to be a fast solver on a single node. The results are

similar when we go to eight nodes (192 cores). The best

speedup the hybrid model achieved is 3.4 while MPI-only

is able to get a speedup of 1.2 for the dropping method. The

6x4 and 12x2 configurations in the 720K problem size case

640640

Figure 6. Solve time for MPI-only and MPI+threads implementations for
different problem sizes per subdomain.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Problem Size)

1 (60K) 0.25(10) 0.19(10) 0.35(26) 0.21(11)
2 (120K) 0.31(11) 0.22(10) 0.40(26) 0.61(26)
4 (240K) 0.33(11) 0.67(26) 0.20(12) 0.74(26)
8 (480K) 0.41(11) 0.29(11) 0.60(26) 0.82(26)

Table V
SHYLU (PROBING) WEAK SCALING RESULTS: TIMING IN SECONDS

(#ITERATIONS) FOR 2D FINITE ELEMENT PROBLEM.

(Table IV) achieve a speed up of 4.92 and 4.68 going from

48 to 384 cores. MPI-only implementation gained a speedup

of 2.39 for this case. Overall, ShyLU is able to scale up to

384 cores reasonably well.

One should also note that the MPI+threads approach has

allowed us to reduce the iteration creep that we would

expect to see in many precondtioners as the problem size

and number of processes increase. For example, in Table II,

we can see that the configuration of 8 nodes with 12 MPI

processes and 2 threads in each node and the configuration

of 4 nodes with 24 MPI processes (1 thread in each process)

gives us the same number of iterations – 227. However, the

former is using the two threads for better scalability and

takes only 65% of the time.

E. Weak scaling

We perform weak scaling experiments on both 2D and 3D

problems where we keep the number of degrees of freedom

(matrix rows) per core constant. This is not the intended

use case for ShyLU (as a subdomain solver, strong scaling

is more relevant) but we wish to show that ShyLU also does

reasonably well in this setting.

Our 2D test problem is a finite element discretization

of an elliptic PDE on a structured grid but with random

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Problem Size)

1 (60K) 0.37(17) 0.31(18) 0.20(22) 0.39(27)
2 (120K) 0.48(20) 0.51(26) 0.30(27) 0.50(30)
4 (240K) 0.82(29) 0.49(25) 0.38(28) 0.44(31)
8 (480K) 0.83(29) 0.66(30) 0.44(30) 0.55(32)

Table VI
SHYLU (DROPPING) WEAK SCALING RESULTS: TIMING IN SECONDS

(#ITERATIONS) FOR 2D FINITE ELEMENT PROBLEM.

MPI Processes x Number of Threads in
each node

Nodes 4x6 6x4 12x2 24x1
(Problem)

(Size)
1 (90K) 3.0(47) 2.53(54) 1.76(67) 1.37(73)

2 (180K) 4.55(71) 3.93(80) 2.78(95) 2.41(110)
4 (360K) 8.34(122) 7.25(144) 5.31(196) 6.09(227)
8 (720K) 10.30(103) 9.59(115) 5.78(130) 5.17(139)

Table VII
SHYLU (DROPPING) WEAK SCALING RESULTS: TIMING IN SECONDS

(#ITERATIONS) FOR THE 3D PROBLEM.

coefficients, generated in Matlab by the command

A = gallery(’wathen’,nx,ny). We vary the num-

ber of nodes from one to eight. Again, we designed ShyLU

to be run within a node but we want to demonstrate scaling

beyond 24 cores, so we run our experiments across multiple

nodes.

We see in Tables V– VI that both run time and number of

iterations increase slowly with the number of cores (as we

go down the columns). The dropping version demonstrates a

smooth and predictable behavior, while the probing version

has sudden jumps in number of iterations and time. We

conjecture that this is because the preconditioner is sensitive

to the probing pattern (which is difficult to choose). For

the dropping version, the 12x2 configuration with 12 MPI

processes and 2 threads each per node is consistently the

best.

Our 3D test problem is a finite element discretization of an

elliptic PDE on the unstructured grid show in Figure 4. The

weak scaling results for this problem are shown in Table VII.

We observe that going from 1 to 8 nodes, the number of

iterations roughly doubles while the run time roughly triples.

Although worse than the optimal O(n) scaling that multigrid

methods may be able to achieve, this is much better than the

typical O(n2) operations scaling by general sparse direct

solvers. ShyLU’s intended usage as a subdomain solver

also places more emphasis on strong scaling than weak
scaling, as the problem size per node is not growing as

fast as the node concurrency. We conclude that ShyLU is

a good subdomain solver for problems of moderate size and

scales quite well up to 384 cores. Thus, it can also be used

as a solver/preconditioner in itself on such problems and

641641

platforms.

VII. FUTURE WORK

We plan several improvements in ShyLU. Some of these

deal with combinatorial issues in the solver algorithm, others

are numerical.

First, we wish to further study the partitioning and or-

dering strategy. In concurrent work [29] we explored the

trade-off between load imbalance in the diagonal blocks

and the size of the Schur complement. By allowing more

imbalance in the diagonal blocks, the partitioner can usually

find a smaller block border. We have also observed that

the load balance in the system for the inner solve (S)

may be poor even though the load balance for the outer

problem (A) is good. With current partitioning tools one can

balance the interior vertices but not the work in the sparse

factorization or solve. Furthermore, it is not sufficient to

balance the interior vertices (or factorization work) because

ShyLU would require the boundary vertices to be balanced

as well as that corresponds to the number of triangular

solves and matrix vector multiplies while constructing the

Schur complement. We believe this issue poses a partitioning

problem with multiple constraints and objectives, and cannot

be adequately handled using standard partitioning models.

Second, we intend to extend the code to handle struc-

turally nonsymmetric problems with nonsymmetric permu-

tations. Our current implementation uses symmetric ordering

and partitioning, even for nonsymmetric problems. We can

use the hypergraph partitioning and permutation to singly

bordered block form as shown in Figure 1. However, this

requires a multithreaded direct solver that can handle rect-

angular blocks.

Third, one could study the effect of inexact solves (e.g.,

with incomplete factorizations) on the diagonal blocks (Di).

This will require the iterative solver to iterate on the entire

system, not just the Schur complement. The number of

iterations will likely increase, but both the setup and each

solve on the diagonal blocks will be faster. This variation

would also need less memory.

Fourth, we should test ShyLU on highly ill-conditioned

problems, such as indefinite problems and systems from

vector PDEs. Although ShyLU is robust on the range of

problems we tested here, harder test problems may reveal

the need for some algorithmic adjustments.

Finally, we plan to integrate ShyLU as a subdomain

solver within a parallel domain decomposition framework.

This would comprise a truely hierarchical solver with three

different layers of parallelism in the solver.

We remark that none of these issues are specific to ShyLU

and many also apply to other hybrid solvers. Discussions

with developers of other such solvers have confirmed that

they face similar issues. In particular, we believe research

on the combinatorial problems above may help advance a

whole class of solvers.

VIII. CONCLUSIONS

We have introduced a new hybrid-hybrid solver, ShyLU.

ShyLU is hybrid both in the mathematical sense (direct

and iterative) and in the parallel computing sense (MPI

+ threads). ShyLU is both a robust linear solver and a

flexible framework that allows researchers to experiment

with algorithmic options. We introduced and explored sev-

eral such options: a new probing based Schur complement

approximation vs. the traditional dropping strategy, wide vs.

narrow separators, and exact vs. inexact solves for the Schur

complement system. Performance results show ShyLU can

scale well for up to 384 cores in the hybrid mode.

We also studied the question, that given a complex algo-

rithm, with a MPI-only implementation and hybrid (MPI

+Threads) implementation, for a fixed set of parameters:

Can the hybrid implementation beat the MPI-only imple-

mentation? Empirical results on a 24-core MagnyCours node

show that it is advantageous to run MPI on the node.

This is not surprising since MPI gives good locality and

memory affinity. However, we project that for applications

and algorithms with smaller problem size per domain, MPI-

only works well up to about 48 cores, but for 96 or more

cores hybrid methods are faster. The crossover point where

the hybrid model beats MPI depends on the problem size per

subdomain. We conclude that MPI-only solvers is a good

choice for today’s multicore architectures. However, consid-

ering the fact that the number of cores per node is increasing

steadily and memory architectures are changing to favor

core-to-core data sharing, hybrid (hierarchical) algorithms

and implementations are important for future multicore

architectures. We predict multiple levels of parallelism will

be essential on future exascale computers.

ACKNOWLEDGMENT

Sandia is a multiprogram laboratory operated by Sandia

Corporation, a wholly owned subsidiary of Lockheed Mar-

tin, for the United States Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-

94AL85000.

The authors thank the Department of Energy’s Office

of Science and the Advanced Scientific Computing Re-

search (ASCR) office for financial support. This research

used resources of the National Energy Research Scientific

Computing Center (NERSC), which is supported by the

Office of Science of the DOE under Contract No. DE-AC02-

05CH11231.

REFERENCES

[1] M. Gee, C. Siefert, J. Hu, R. Tuminaro, and M. Sala, “ML
5.0 smoothed aggregation user’s guide,” Sandia National
Laboratories, Tech. Rep. SAND2006-2649, 2006.

[2] R. D. Falgout and U. M. Yang, “Hypre: A library of high
performance preconditioners,” Lecture Notes in Computer
Science, vol. 2331, pp. 632–??, 2002.

642642

[3] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra,
J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P.
Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,
R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S.
Stanley, “An overview of the Trilinos project,” ACM Trans.
Math. Softw., vol. 31, no. 3, pp. 397–423, 2005.

[4] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Effi-
cient management of parallelism in object-oriented numerical
software libraries. Birkhauser Boston Inc., 1997, pp. 163–
202.

[5] J. W. Demmel, J. R. Gilbert, and X. S. Li, “An asynchronous
parallel supernodal algorithm for sparse gaussian elimina-
tion,” SIAM J. Matrix Anal. Appl., vol. 20, pp. 915–952, July
1999.

[6] X. S. Li, “An overview of SuperLU: Algorithms, implemen-
tation, and user interface,” ACM Trans. Math. Softw., vol. 31,
pp. 302–325, September 2005.

[7] O. Schenk and K. Gärtner, “Solving unsymmetric sparse
systems of linear equations with PARDISO,” Journal of
Future Generation Computer Systems, vol. 20, no. 3, pp. 475–
487, 2004.

[8] P. Amestoy, I. Duff, J.-Y. L’Excellent, and J. Koster, MUl-
tifrontal Massively Parallel Solver (MUMPS Versions 4.3.1)
Users’ Guide, 2003.

[9] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent,
and J. Koster, “MUMPS home page,” 2003,
http://www.enseeiht.fr/lima/apo/MUMPS.

[10] P. Henon, P. Ramet, and J. Roaman, “PaStiX: A parallel
sparse direct solver based on a static scheduling for mixed
1d/2d block distributions,” in Proceedings of Irregular’2000,
ser. Lecture Notes in Comput. Sci., S. Verlag, Ed., vol. 1800,
2000, pp. 519–525.

[11] D. Hysom and A. Pothen, “A scalable parallel algorithm for
incomplete factorization,” SIAM J. on Sci. Comp., vol. 22,
no. 6, pp. 2194–2215, 2001.

[12] J. I. Aliaga, M. Bollhöfer, A. F. Martı́n, and E. S. Quintana-
Ortı́, “Exploiting thread-level parallelism in the iterative solu-
tion of sparse linear systems,” Parallel Comput., vol. 37, pp.
183–202, March 2011.

[13] J. Gaidamour and P. Henon, “A parallel direct/iterative solver
based on a schur complement approach,” Computational
Science and Engineering, IEEE International Conference on,
vol. 0, pp. 98–105, 2008.

[14] L. Giraud and A. Haidar, “Parallel algebraic hybrid solvers
for large 3d convection-diffusion problems,” Numerical Algo-
rithms, vol. 51, pp. 151–177, 2009.

[15] I. Yamazaki and X. S. Li, “On techniques to improve ro-
bustness and scalability of a parallel hybrid linear solver,”
in Proceedings of the 9th international conference on High
performance computing for computational science, ser. VEC-
PAR’10. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 421–
434.

[16] Y. Saad and M. Sosonkina, “Distributed Schur complement
techniques for general sparse linear systems,” SIAM J. Sci.
Comput, vol. 21, pp. 1337–1356, 1997.

[17] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed.
SIAM, 2003.

[18] M. Sala and M. Heroux, “Robust algebraic preconditioners
with IFPACK 3.0,” Sandia National Laboratories, Tech. Rep.
SAND-0662, February 2005.

[19] J. R. Gilbert and E. Zmijewski, “A parallel graph partitioning
algorithm for a message-passing multiprocessor,” Interna-
tional Journal of Parallel Programming, vol. 16, pp. 427–449,
1987.

[20] A. George, M. T. Heath, J. Liu, and E. Ng, “Sparse Cholesky
factorization on a local-memory multiprocessor,” SIAM J. Sci.
Stat. Comput., vol. 9, pp. 327–340, March 1988.

[21] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and
U. Catalyurek, “Parallel hypergraph partitioning for scientific
computing,” in Proc. of 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS’06). IEEE, 2006.

[22] M. Sala, K. S. Stanley, and M. A. Heroux, “On the design of
interfaces to sparse direct solvers,” ACM Trans. Math. Softw.,
vol. 34, pp. 9:1–9:22, March 2008.

[23] L. Giraud, A. Haidar, and Y. Saad, “Sparse approximations
of the schur complement for parallel algebraic hybrid linear
solvers in 3d,” Numerical Mathematics: Theory, Methods and
Applications, vol. 3, no. 3, pp. 276–294, 2010.

[24] E. Agullo, L. Giraud, A. Guermouche, and J. Roman, “Paral-
lel hierarchical hybrid linear solvers for emerging computing
platforms,” Comptes Rendus Mecanique, vol. 339, pp. 96–
103, 2011.

[25] T. F. C. Chan and T. P. Mathew, “The interface probing
technique in domain decomposition,” SIAM J. Matrix Anal.
Appl., vol. 13, pp. 212–238, January 1992.

[26] D. Bozdağ, U. V. Çatalyürek, A. H. Gebremedhin, F. Manne,
E. G. Boman, and F. Özgüner, “Distributed-memory parallel
algorithms for distance-2 coloring and related problems in
derivative computation,” SIAM J. Sci. Comput., vol. 32, pp.
2418–2446, August 2010.

[27] T. A. Davis and Y. Hu, “The Univerity of Florida collection,”
ACM Trans. Math. Software, vol. 38, no. 1, 2011.

[28] T. A. Davis, “Algorithm 832: UMFPACK v4.3—an
unsymmetric-pattern multifrontal method,” ACM Trans. Math.
Softw., vol. 30, pp. 196–199, June 2004.

[29] E. G. Boman and S. Rajamanickam, “A study of combinato-
rial issues in a sparse hybrid solver,” in Proc. of SciDAC’11,
2011.

643643

